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Abstract 

The prognosis & health management (PHM) of 

aerospace components is a very complex system. A 

complete PHM system involves sensors, signal 

processing, condition monitoring, health assessment, 

physical reasoning and decision- making. Such an 

integrated approach to prognostics involves physics-

based modelling, experience-based modelling and 

modelling based on the statistical properties of the 

components by using neural network and fuzzy logic 

techniques. In this paper, we give an overview  of the 

PHM system currently being developed. 
 

1. Introduction 
 

Managing the health of any system is a challenging 
issue. The system under consideration must be 
monitored using sensors located at critical points. 
These sensors record physical parameters such as 
temperature, pressure, vibration. The first problem is 
to identify an anomaly among the data, either from a 
single sensor or from a group of sensors. The next 
problem is to be able to predict, using the current 
state of the system, the amount of time left before 
the system or the component fails, so that 
appropriate maintenance can be carried out. This is 
the basic idea of prognostic health management 
(PHM) system [1-4]. 
 

In general, an integrated PHM system consists of 
models of the system, set of sensors, facilities for 
data collection and analysis, and functions for 
detection of anomalies and then prediction of 
failures. Such an integrated system is designed to 
replace the scheduled maintenance of the system 
with a scheme where the system is maintained if and 
when necessary. Thus, the principle is to take 
corrective action only when and where it is needed.   

 
Sensors play an essential part in PHM as these 
monitor the physical parameters of the system. 
Sensors, placed in strategic locations in the system, 
can be wired or wireless. Some of the sensors can be 
based on micro-electromechanical systems 
(MEMS). In particular, MEMS-based sensors are 
ideal for gas turbine engines.  
 

In the context of aerospace industry, the life cycle 
management system has been largely based on 
experience [5]. With the advent of MEMS-based 
sensors, it opens up the possibility of monitoring the 
physical parameters at places where it was not 
possible to measure them, and therefore the state of 
system can be assessed. Any significant deviation 
from the expected behaviour of the system can be 
considered an anomaly and be dealt with 
appropriately and in a timely manner.  
 

In this paper, we give an overview of such a PHM 
system under development for gas turbine engines. 
We describe various components of the PHM 
system, discuss different prognostics mechanisms, 
and present a high-level design of our PHM system. 
 

2.  Components of a  PHM 
 

Sensors 
 

Sensors are essential part of the PHM system. The 
issues here are the characteristics of the sensors such 
as the sensitivity of the detected signal, their 
location in the system, and whether these sensors 
should be wired or be wireless. Sensors are to be 
selected depending on the range of the parameter to 
be measured. For example, thin-film thermocouples, 
particularly made of Pt/Rh, are ideally suited to 
measure high temperatures on the surface of an 
engine blade. 



 
Model of the system 
 

A mathematical or a geometrical description of the 
system is needed in order to model the location of 
the sensors.  This is required to isolate the location 
of an anomaly. Often the sensor may not be located 
at site of a problem; however, if there is a grid of 
sensors, then it is possible to determine the site more 
precisely.   
 

Data Collection and Analysis 
 

Data from each sensor can be analysed to look for 
an anomaly. An anomaly can be defined as a datum 
which has a significant deviation from its 
characteristic behaviour.  Depending on the 
requirement, several levels of alarms are set for each 
sensor.  Since the sensors measure various physical 
parameters such as temperature, pressure, vibration, 
etc., the dataset will be multi-dimensional.   
 

While each sensor is monitored individually for 
anomalies, it is often a challenge to identify a 
problem from the data (often noisy) from a set of 
sensors. The questions is: how early can we identify 
the problem so that we have more time to react and 
take preventive action. Concepts of the neural 
networks and Bayesian networks are used to locate a 
pattern in the multi-dimensional dataset.  
 
Data from a single sensor are analysed to look for 
both the long term and the short term behaviour of 
the component. Any significant deviation is 
signalled as a possible problem.  The severity level 
of the problem is determined as well as the time 
available to rectify it. Hence, appropriate action is 
taken. 
 

3. Approaches to Prognostics 
  

In the previous section, we mentioned the detection 
of an anomaly. The prediction that the anomaly can 
lead to a failure has three levels of analysis.  
 

Experience-based prognostics 
 
This is rather a simple and is common practice. One 
looks at the history of the failure of the system and 
any similarity with the previous failures suggest the 
appropriate action to be taken.  Such experienced-
based decisions are rather ad hoc, often carried out 
without a proper understanding of the underlying 
problem. Its application is, therefore, limited. 
 

 
Statistics-based Prognostics 
 
In this approach, the collected data are analysed. 
Probability of failure are assigned to detected 
anomalies.  The sensors measure various parameters  
inside an engine. These data are edited in an 
automated algorithm, and the statistical properties 
are determined continuously. Each data stream has 
its alert and alarm levels. At the basic level, trend 
curves are fitted continuously to the data to 
determine the current as well as the future 
behaviour. Alerts are usually set well before the 
measured parameters reach their respective critical 
levels, and appropriate corrective actions are taken. 
It is a challenge to do this in the harsh environment 
of the engines, as well as taking data from a large 
number of sensors. At the next level, the multi-
dimensional dataset need to be searched for patterns 
which lead to failures. Any pattern recognition 
technique, namely neural networks or Bayesian 
belief networks, will be used in this context. 
Application of these techniques to the data from 
engines is a major advancement. 
  
Physics-based models 
 

The physics-based modelling involves solution of 
differential equations, often nonlinear, either in 
closed form or numerical approximations. The 
experience-based modelling involves empirical rules 
derived from failure history of the components. The 
probabilistic models such as Bayesian Belief 
Networks, Neural Networks or Fuzzy Systems can 
be used to predict the possible behaviour of the 
system using the current state of the system and the 
prior conditional probabilities, biases, and weights. 
Signals from various sensors are correlated to 
analyze and look for patterns of failures in the multi-
dimensional data. We believe that the most effective 
means of prognostics in systems is the use of 
physics-based modelling and probabilistic models to 
develop decision making applications that can learn 
to locate these signatures of faults from existing data 
and can be used to predict possible failures  
 
While the physics-based models are highly 

desirable, it is often difficult to build a physical 
model of a complex system. The physical and rule-
based systems depend on the knowledge of the 
known fault events which are being monitored. The 
learning systems can process a wide variety of data 
types and perform superior to rule-based systems 
because they cover areas which are not covered by 
general rules. Therefore, the learning system works 



better where the physical models and general rules 
have not been developed. However, the learning 
systems are as good as the data on which they have 
been trained. An ideal system would be the one 
which can combine the benefits of all the three 
approaches. 
 
In the context of gas turbine engines, the physics-

based models involve the study of lifetime of the 
engine blades, in particular, the lifetime of the 
thermal barrier coatings. The engine blades are made 
up of super-alloys based on Ni. These alloys are 
deformed at the operating temperature (1200

0
 C) of 

the engines and hence need thermal insulation. A 
bondcoat of Ni, Cr, Al, Y is applied on the super-
alloy substrate and a coating of zirconia is grown on 
that which provides thermal insulation to the super-
alloy. Oxygen flows through zirconia and oxidises 
Al in the bondcoat. This oxidation process starts the 
diffusion of elements in the bondcoat. The thermal 
grown oxide layer is critical to the stability of the 
coating and hence the life of the engine blades. 
Several scenarios are being explored: internal 
oxidation, external oxidation of the super-alloy, and 
with and without the coating. The simulations help 
understand the growth of cracks in the oxide layers. 
Physical models will help predict the failures of the 
thermal barrier coating.  
 

4. PHM Architecture 

 
Figure 1 shows the high-level view of our PHM 
architecture. Due to page limitations, it is not 
possible to describe all the details of various 
components. We simply mention the major 
components of the system in this section.  
 
Graphics Unit: This unit has the display 
functionalities such as line drawings, 3-D display, 
histograms, able to overlay curves of different 
sensors, a model of the system, location of the 
sensors, display multiple sensor data at the same 
time, interactively change the display etc. 
 
Statistics Unit: It has the general statistical functions 
such as linear regression analysis, cubic spline 
fitting,   short-term and long-term modelling of the 
data. 
  
Data Mining and Data Fusion Unit: Since there are 
sensors of different kinds, the data streams from 
these sensors are to be analysed as a single entity. 
We use the concepts of data mining and fusion to 
accurately predict the health of the system. 
 

Physics-based Model Unit: This unit implements the 
equations describing the thermal, electrical and other 
properties of the system. Some of them are 
differential equations which need to be solved 
numerically using finite element analysis. For 
example, the oxidation process in the engine blades, 
which impacts the lifetime, is described by a set of 
non-linear differential equations with moving 
boundary.  
 
The biggest challenge for us has been in determining 
the location of the sensors and their physical 
characteristics. To facilitate this, we have a 
geometrical and a physical description of system so 
that we can identify the critical points that need to 
be monitored. The type of sensors depends on the 
level of signal to be detected. Since the sensors are 
based on MEMS technology, a large number of 
them can be easily installed without affecting the 
performance of the system while providing detail 
measurements. Obviously, this increases the load on 
data collection, storage and analysis.  All these 
requirements are the inputs to our PHM system.  
 
The data are processed and stored in the Data 
Storage. Each data stream (i.e. each sensor) is 
individually analysed using functions in the 
Statistics Unit. The Graphics Unit displays the raw 
as well as the processed data. Known patterns that 
have led to anomalies are searched in the  multi-
dimensional dataset in the Data Storage.  The 
physical parameters measured are then fed to the 
mathematical equations describing the system, and 
the future state of the system is determined 
numerically.  
 
The anomalies detected are then assessed for their 
severity and impact on the lifetime of the system. 
The risk factor associated with each anomaly is 
computed so that appropriate corrective action now 
can be taken. 
 

5. Conclusions 
 
In this paper, we have identified and described all 
components of an integrated PHM system where the 
sensors, data collections, modelling using statistical 
data analysis techniques, and numerical solutions to 
equations that describe the physical system can be 
incorporated in a natural fashion. We have also 
presented a high-level design of our PHM under 
development, keeping gas turbine engines in mind. 
Our approach is rather general as it can be easily 
adapted to any other system.  
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Figure 1:  Block Diagram of our PHM Architecture 
 


