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       ABSTRACT  

A statistical algorithm was developed for the damage fault 

diagnosis and prognosis tool and the present work focuses 

on the experimental validation. The oxide scale growth 

experiments using laboratory samples under thermal cycling 

simulate the hot section turbine blade coating failures.  The 

experimental steps, oxide thickness data measurement, 

collection and sampling procedures are discussed. Three 

data samples each  from two groups under different thermal 

cycling conditions are considered. The data are subjected to 

randomness check, preprocessing, rank sum test etc. The 

validation is carried out with 15 possible combinations for 

analysis. Consistent with the mean thickness distribution for 

the samples in two groups, the statistical algorithm for 

damage and anomaly diagnosis yields expected results.   
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1. INTRODUCTION  

Diagonsis, prognosis and health management 

(DPHM) have become buzzing words among the 

manufacturing and service industries dealing with critical 

and complex structures, machineries and equipments. The 

avionic, nuclear and power industries are constantly in 

search for most effective and economic solutions in order to 

continue with the service of ageing infrastructures. The 

avionic industries, in particular, have ever increasing 

demands for DPHM technology for avoiding/reducing 

unwanted events like unplanned engine overhauling, delays 

and cancellation of flights, life cycle cost, environmental 

pollution etc. [1-3]. NASA has predicted an average number 

of overseas passengers to reach six millions a day and a 

requirement of 500 to 1500 second generation supersonic 

commercial flights to meet the demands [4]. The critical 

issues assume much greater significance for aging 

commercial and military aircrafts as one-half to two-third of 

maintenance cost goes for replacement and repair of aged 

parts [5]. Condition based treatment or maintenance for 

cause strategy helps greatly in mitigating these demands for 

managing modern civilian and military flights. Real- time, 

robust and integrated technology for structural health 

assessment and maintenance is the need of the day for gas 

turbine engines. Such technology is required for detection, 

classification, and prediction of developing engine faults 

and structural degradation in order to maintain high levels of 

safety and efficiency at reduced cycle costs.  

A practical example is discussed here to 

demonstrate the application and significance of DPHM tool 

in industries. A complex electro-thermo-mechanical engine 

consists of number of parts performing various functions 

under different working environments.  The engine health 

condition and its performance need to be assessed on regular 

basis. One important parameter for continuous and 

convenient condition assessment is the engine oil quality. 

Oil quality and properties tend to degrade with engine 

operations due to a host of factors like wear, erosion, 

corrosion, lubrication, temperature, foreign object damages. 

These mechanisms suggest that the oil quality change will 

depend on severity of the engine usage among other factors 

and not just on the time and cycle of operations. The oil 

viscosity or pH level can be a suitable and sensitive index to 

monitor the oil quality during the engine operation. First 

sign of significant changes in these indexes may be 

considered as diagnosis of engine fault development and the 

oil life. The time interval for changing the oil and/or engine 

overhauling may be estimated from the trend in the change 

of viscosity/pH with time or cycle as measured regularly and 

the upper bound of the tolerable values.  

The authors have been involved in research and 

developmental activities in fault diagnosis, prognosis and 

health management (DPHM) for past five years in 

collaboration with universities and research organizations 



[6,7]. The current DPHM R & D work of our group focussed on gas turbine components, namely turbine blades  

integrates three complimentry approaches, namely statistical 

analysis (STAN), physical damage analysis (PDAN) and 

data based artificial neural network (DANN). In a recent 

work, a technique for failure risk assessment during blade 

life usage based on blade tip tolerance limits was developed 

using statistical parameters, namely like percentile ranking 

and regression analysis [7]. 

These components are subjected to  worst operating 

situations comprising of elevated temperature, high 

pressure, oxidizing environment and high static and cyclic 

stress [5]. Thermal barrier coating (TBC) is applied on hot-

section parts In order to make the blade and vane 

components damage tolerant, more durable, sustain higher 

temperature and adverse environment, as illustrated 

schematically in Fig.  1. Failure of the coating by 

deformation, cracking, foreign object damage, delamination,  

spallation etc. exposes the blade and shortens the operating 

life. The present work is confined to the study of the 

effectiveness of the statistical technique and the algorithm 

developed  in diagnosing the damage initiation in coated 

superalloy subjected to thermal cycling. The validation of 

the STAN tool is tested using primary experimental data 

generated in the laboratory. 

 

2. STATISTICAL ALGORITHM 

Several technological breakthroughs and 

advancements in key areas like sensing system, signal 

processing, autonomic system, high computational speed, 

finite element and fracture mechanics analysis, 

nanotechnology, data mining and data fusioning are now 

available to make the DPHM  technology matured and 

vastly improved. An architectural framework and design of 

the DPHM system considering statistical approaches has 

been published by the authors earlier [6-8]. In the present 

paper, experimental validation of statistical algorithm is 

discussed for the application to diagnose damage initiation 

and growth in coated superalloy samples subjected to 

thermal cycling. The authors developed a statistical 

algorithm using Wilcoxon rank sum model and nonlinear 

regression models earlier [8]. The essential steps in the 

algorithm for any system fault detection include, input data 

(historical and test) sampling, checking randomness, data 

preprocessing, rank sum test, selection of damage and 

failure criterion, regression analysis and life prognosis. The 

non-parametric statistical approach avoids any parametric 

assumption for data distribution as well as the effects of 

outliers. At any given instant during on-line analysis, two 

data sets are required to be sampled from the large 

population of raw data. One data set comprises of current or 

test data and the other is termed as historical or normal data 

set. The two data set samples are ranked digitally and then 

hypothetically tested for any significant variation in the 

distribution.  

 

                               

Fig. 1 Schematic representation of physical damages 

(aluminium and other oxides) in thermally cycled coated 

turbine blade material.  

Once the fault is diagnosed, exponential smoothing 

and nonlinear auto regression methods are considered for 

prognosis of the state of health and remaining life. In lifing 

analysis, long term prediction to allow additional time for 

undertaking necessary measures for health management has 

great advantage. Lifing analysis depends on the maximum 

size of the tolerable damage size i.e. the thickness of the 

thermally grown layer formed between the thermal barrier 

oxide and the bond coat as illustrated in Fig.  1. The critical 

size of the TGO layer is a function of several operating 

conditions like stress, temperature cycle, microstructure and 

chemistry. However, a generally agreed upon damage size is 

around 8 microns. A different criterion of defining failure is 

also followed i.e. failure is accepted when coating falls off 

from 25 to 30 percent of total coated blade surface. The 

other experimental approach being considered in our project 

is to sense and monitor temperature and use as fault 

diagnosing parameter, other than the thermally grown oxide 

layer thickness. More the spallation of coating from surface, 

more will be the rise in temperature of the substrate alloy 

over the given time period. In different words, the 

temperature accumulation in the turbine blade will tend to 

rise with thermal exposure time for the same number of 

thermal cycles.  

 

3. EXPERIMENTAL STEPS  

The experimental program attempts to simulate the 

initiation and growth of physical damage by the formation 

of various oxides in gas turbine blades exposed to elevated 

temperatures [9 -11]. The essential steps followed consist of 

sample preparation, plasma spray TBC coating, thermal 

cycling, sectioning, mounting, metallography, carbon 

coating, scanning electron microscopy (SEM), measurement 

etc. The details of each step are beyond the scope of this 

paper and are given elsewhere [9]. Fig. 2 illustrates 

schematically the sequential steps followed in the simulated 

experimental program;  



(a)  base alloy sample preparation  with dimensions of 8 

mm. in height and 16 mm. in round cross-section.  

(b) superalloy base coating with bond coat (around 50 to 60 

microns in thickness) by plasma spray technique for 

stronger adherence of the thermal barrier coating (TBC). For 

clarity, the interfaces in between the different layers are 

clearly shown in Fig. 2(b, c). 

(c) Yttrium stabilized zirconia (YSZ) was then coated as 

TBC over bond coat by air plasma spray method. The TBC 

thickness was later measured to be around 100-150 microns. 

(d)  The samples were then kept inside the programmable 

resistance heating furnace and subjected to thermal cycling. 

One cycle required 65 to 70 minutes to complete on an 

average. After the completion of some specified number of 

cycles, two samples were taken out for further examinations. 

The rest of the samples were continued with thermal 

exposure until the completion of predetermined and 

successive number of cycles. As shown in Fig. 2(d), as a 

result of thermal cycling, oxide layer (mainly aluminium 

oxide formed at the interface between the TBC and bond 

coat (marked with black thin layer) [9-11].   

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig. 2 Sample configuration used and the major  

    sequential steps followed in the experiments 
 

(e) Thermally grown oxide (TGO) damage is a  

thermodynamic and diffusion controlled phenomenon and 

is a function of both time and temperature, both of them 

were varied in order to allow appreciable growth leading to 

TGO growth and failure. The TGO layer continued to grow 

with more number of thermal cycles. For quantitative 

assessment of TGO growth, the samples were sectioned at 

the middle as shown in Fig. 2(d). The cross-sectional view 

with all the layers is displayed in Fig. 2(e). The thickness of 

TGO was measured directly on the SEM micrographs taken 

from the cross-sectional plane.  

 

4. RESULTS 

The metallographically prepared and  

microscopically examined samples displayed different 

layers and TGO as typically shown in SEM micrographs 

(Figs. 3 and 4). Fig. 3 corresponds to Fig. 2(c) without the 

 

 
Fig. 3 SEM micrograph displaying superalloy substrate, 

intermediate bond coat and thermal barrier coating layers 

without TGO prior to thermal cycling 

 
 

Fig. 4 SEM micrographs showing wide distribution in the 

thickness and the morphology of oxide layer formed at the 

interface. This is considered as the critical physical damage 

to be sensed for fault diagnosis and  life prediction for 

coated gas turbine blade. 
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Fig. 5 Experimental oxide damage data distribution after 

100 thermal cycles and typical distribution fittings  

 

initiation of any TGO, while Fig. 4 corresponds to Figs. 2(d 

and e) after the formation and growth of TGO.  Ideally, the 

damage data needs to be monitored employing ultrasonic 

thickness gauge and collected continuously in order to carry 

out the fault diagnosis and long term behavior prediction at 

regular intervals. In the present work, the data was collected 

intermittently and off-line in view of the experimental 

limitations. However, it may be assumed here as continuous 

collection of data at a regular interval while the oxide 

growth remain nearly constant (say after 100 cycles) with 

acceptable scatter.  As the data gets stored and sampled 

intermittently, the statistical algorithm developed should 

diagnose the significant changes in the data distribution to 

identify the damage. Fig. 5 displays typical statistical 

parametric fittings of data assuming three different 

distributions, namely two parametric (lognormal and 

normal) and one non-parametric. The nonparametric fitting 

has certain advantages over other fittings and constitutes the 

basis of our algorithm [12, 13]. The Wilcoxon rank sum 

analysis assumes nonparametric approach and is used here 

for the purpose of diagnosing difference between two 

sample distributions. 

 

5. VALIDATION AND DISCUSSION 

The validation of the statistical algorithm 

developed for the damage diagnosis is tested with the 

experimentally measured oxide thickness data as described 

in the preceding two sections. The algorithm is developed 

for continuous stream of data collected over operating time. 

However, the present application of designed algorithm 

involves data of TGO thickness that were collected after 

certain number of thermal cycles ensuring changes in the 

oxide thickness statistically. At least, three random data 

samples of size 25 each were considered from each of two 

different thermally cycled specimens (N1 = 10 and N2 = 50). 

The test validation was carried out among samples under 

same thermal cycle (N1 or N2) and also among samples 

collected from differently cycled samples. Normal 

approximation is assumed for large sample size of 25 [12]. 

The randomness of data samples was ensured by counting 

the number of unbroken sequence on either side of median 

value and determining the probability as detailed earlier [8]. 

The probability values varied from 15 to 50 percent [10]. In 

these cases, the data samples tested to be random 

considering 95 percent significance level. However, one 

case out of six data samples studied failed and resampling 

was necessary for the sample failed the randomness check. 

As described earlier, in data preprocessing, the weighing 

factor was calculated for each data set to exclude outliers 

and the data samples were preprocessed. Only two cases out 

of 15 validation analysis required preprocessing of data for 

more than two times in order to satisfy the criterion of 

median values. The difference in the two successively 

preprocessed median values is set to be within one percent 

of the previous median value. Next, Wilcoxon rank sum test 

analysis was carried out manually for the data sets and 

samples.  The null hypothesis (N.H) in the present analysis 

is assumed as the two samples are drawn from same 

population without any acceptable changes or difference; 

while the alternative hypothesis is assumed to be 

nondirectional i.e. one sample is statistically different from 

the other.  The level of significance for test validation is 

kept at 95 percent i.e. at 5 percent error level. A synopsis of 

fifteen validation analysis considering three samples (ABC 

and XYZ) drawn from two groups are presented in table 1 

below.  

Rejection of null hypothesis implies that the two 

samples under analysis come from different source and 

population. In other words, the oxide damage thickness 

samples (XYZ) are statistically different and the data 

provides positive indications for damage diagnosis.  The 

mean value for each of the sampled data group considered in 

the analysis is included in the first column of table 1 for 

confirmation of results. The mean oxide thickness for group  

 

Table 1: Synopsis of rank sum analysis and validation 

 

        Samples  

source, mean and 

number of 

analysis 

Rank sum at 

lower end 

Proba

bility 

range 

in % 

Test status 

A(1.30)  X(1.66) 

B(1.38)  Y(1.47) 

C(1.42)  Z(1.55) 

  (3)      +    (3) 

    combinations 

Range: 550– 

650 

Normal 

approximated 

value - 637.5 

15-40 N.H of no 

difference 

accepted 

A(1.30)  X(1.66) 

B(1.38)  Y(1.47) 

C(1.42)  Z(1.55) 

 

(9 combinations) 

Range: 350– 

450 

Normal 

approximated 

value - 637.5 

<0.01 N.H of 

same 

population 

rejected  



XYZ is consistently higher than that for ABC samples. The 

rank sum analysis based on nonparametric approach used in 

the present work is found to be consistent with the 

experimental observations. Further work will be carried out 

for prognostic analysis with the oxide scale growth data. 

The future work in this direction will concentrate mainly on 

three aspects, namely  i) validation of statistical algorithm 

for prognosis part; ii) sampling from continuous stream of 

time series data and iii) real time diagnostic and prognostic 

applications. 

 

6. SUMMARY 

The present work focuses on the experimental 

validation of statistical algorithm developed for the damage 

diagnosis and prognosis for economic and efficient 

management of critical structures and components like 

aeroengine. The test validation is confined to the damage 

diagnosis part only. The validation uses oxide thickness 

damage data from the simulated experiments in the 

laboratory. Under increased number of thermal cycles 

between room temperature and 1080°C, the oxide layers at 

the interface between bond coat and thermal barrier coating 

continued to grow. Six data samples of size 25 collected 

from two different thermal exposure conditions were used 

for preprocessing and rank sum testing. 15 test validations 

using the algorithm shows consistent results at 95 percent 

confidence level as observed by the actual sample mean of 

oxide scale thickness. 

 

         ACKNOWLEDGEMENT 
The experimental data used in the paper was 

obtained by Amar Kumar during his tenure as Guest worker 

at the SMP Lab., Institute of Aerospace Research, National 

Research Council, Ottawa.  The author expresses his sincere 

thanks and gratitude to the authorities of NRC for 

accommodating him in the laboratory as guest worker. 

 

REFERENCES 

[1] L. C. Jaw, “Recent advancements in aircraft engine 

health management (EHM) technologies and 

recommendations for the next step”, Proc. ASME Turbo 

Expo, GT2005-68625, pp. 1-13, 2005. 

[2] C R Farrar, N. A. J. Lieven and  M. T Bement, “An 

introduction to damage  prognosis”, Damage Prognosis for 

Aerospace, Civil and Mechanical systems, ed. D. J. Inman, 

C.R. Farrar, V. Lopes Junior and V. Steffen Junior,  John 

Wiley and Sons, pp. 1-12, 2005. 

[3] A. J. Volpani, T. Brotherton and R. Luppold, 

“Development of an information fusion system for engine 

diagnostics and health management”, AIAA 2004-6461, 

AIAA intelligent systems technical conference, 2004.  

[4] A. P. Bartolotta, D. I. Krause, Titanium applications, 

NASA report /TM- 1999/209071, 1999. 

[5] M.I. Wood, “Gas Turbine hot section components: the 

challenge of residual life assessment”, Proceeding Institute 

Mechanical Engineers, vol. 214, pp.193-201, 2000. 

[6] A. N. Kumar, A. Nayak and A. R. Patnaik, “A combined 

model approach for prognosis and life cycle management of 

aero-engine components”, Proc. ASME Turbo Expo 

Conference, Montreal, GT 2007 – 27495, 2007. 

[7] A. Kumar, V. Narasimhan,  A. Nayak,  A. Srivastava 

and N. Goel, “Health risk assessment and prognosis of gas 

turbine blade by simulation and statistical method”, Proc. 

IEEE Canadian Conference on Electrical and Computer 

Engineering, Paper no. 92673,  pp. 1087-1091, 2008. 

[8] TECSIS Document TR_TC_90, “Statistical Module 

Algorithm” June 2008. 
[9] W. R. Chen, X. Wu, B. R. Marple and P. C. Patnaik, 

“The growth and influence of thermally grown oxide in a 

thermal barrier coating”, Surface and coating technology, 

201, pp. 1074-1079, 2006. 

[10] E. A. G. Shillington and D. R. Clarke, “Spalling failure 

of a thermal barrier coating associated with aluminium 

depletion in the bond coat”, Acta. Materi., vol. 47, 4, pp. 

1297-1305, 1999. 

[11] A. M. Karlsson, J. W. Hutchinson and A. G. Evans,” 

The displacement of the thermally grown oxide in thermal 

barrier systems upon temperature cycling”, Materials 

Science and Engineering, vol. A351, pp. 244-257, 2003. 

[12] T. H. Wonnacott and R. J. Wonnacott, Introductory  

statistics for business and economics, 4
th

 ed., John Wiley  

and Sons, 1990. 
[13]  A. Haldar and S. Mahadevan, Probability, Reliability, 

and Statistical Methods in Engineering Design, John Wiley 

& Sons Inc., New York, 2000. 

 


